
NASA Contractor Report

ICASE Report No. 93-71

191540

/M--6!

IC S 2O
Years of

Excellence

USING PARALLEL BANDED LINEAR SYSTEM SOLVERS

IN GENERALIZED EIGENVALUE PROBLEMS

Hong Zhang

William F. Moss I

O,
7

t_

U
C

co
0

v-4
0

i,n

NASA Contract No. NAS1-19480

September 1993

Institute for Computer Applications in Science and Engineering

NASA Langley Research Center

Hampton, Virginia 23681-0001

Operated by the Universities Space Research Association

National Aeronautics and

Space Administration

Langley Research Center
Hampton, Virginia 23681-0001

t4J Z U_

•.I t4J

Z_LU

_ =E ..J I.U

U_Z_

t_W
,.-d ,¢_ ,l_
O" t_J _3 L
,'_ Z I.U O
I _1_

I C3'_

'_ZZC

',,,,_¢:o C;_LL.

=

=

USING PARALLEL BANDED LINEAR SYSTEM SOLVERS
IN GENERALIZED EIGENVALUE PROBLEMS

Hong Zhang 1

Institute for Computer Applications in Science and Engineering

NASA Langley Research Center

Hampton, VA 23681

and

William F. Moss

Department of Mathematical Sciences

Clemson University

Clemson, SC 29634-1907

ABSTRACT

Subspace iteration is a reliable and cost effective method for solving positive definite

banded symmetric generalized eigenproblems, especially in the case of large scale problems.

This paper discusses an algorithm that makes use of two parallel banded solvers in subspace

iteration. A shift is introduced to decompose the banded linear systems into relatively

independent subsystems and to accelerate the iterations. With this shift, an eigenproblem

is mapped efficiently into the memories of a multiprocessor and a high speed-up is obtained

for parallel implementations. An optimal shift is a shift that balances total computation and

communication costs. Under certain conditions, we show how to estimate an optimal shift

analytically using the decay rate for the inverse of a banded matrix, and how to improve this

estimate. Computational results on iPSC/2 and iPSC/860 multiprocessors are presented.

ZThis research was supported by the National Aeronautics and Space Administration under NASA Con-
tract No. NAS1-19480 while the author was in residence at the Institute for Computer Applications in
Science and Engineering (ICASE), NASA Langley Research Center, Hampton, VA 23681. Research was also
supported in part by the National Science Foundation under contract (T?R-9103296. The author is on leave

from the Department of Mathematical Sciences, Clemson University, Clemson, SC 29634-1907.

1 Introduction

Eigenvalue problems arise in many areas of physics and engineering such as the analysis of

electron orbits in atoms and the stability of structures. Due to the large number of applica-

tions of such problems, there is a constant demand for algorithms for computing eigenvalues.

The development of efficient algorithms has received considerable attention in the litera-

ture [1] [2] [23] [29]. With the increased use of advanced computers, parallel algorithms

are also becoming available [11] [17] [19] [20] [22] [24] [281. Most of these algorithms begin

by reduction of the problem to a standard form. This is particularly true for generalized

eigenproblems [5].

This paper presents two parallel banded linear solvers and their application for general-

ized positive definite eigenvalue problems, in which, only a few of the smallest eigenvalues

and corresponding eigenvectors are needed to moderate accuracy. This type of problem arises

in structural analysis and other engineering fields [2] [15]. Among all solution methods, two

families are most popular: subspace iteration [2] [4] [25] [26] and the Lanczos method [12]

[16]. The Lanczos method has been shown to be superior to subspace iteration on sequential

and vector machines [15] [21]. The comparison of the two families on a parallel computer

is relatively unknown. Though the Lanczos method is strongly favored by mathematicians,

subspace iteration is more often used in engineering, particularly in structural analysis. This

may be because subspace iteration is conceptually simple and closely associated with sub-

structure, based on which, one can often construct an approximate subspace from experience.

Many software codes are still using subspace iteration for computing a few dominant eigen-

values and corresponding eigenvectors. The major effort in subspace iteration is devoted to

solving banded linear systems. This paper discusses an algorithm that makes use of two

parallel banded linear solvers in subspace iteration. The main feature of this algorithm is

the introduction of a shift that decomposes the banded linear system into relatively inde-

pendent subsystems and accelerates tlle subspace iteration. We shall show when this shift

is applicable, how to estimate this shift analytically using the decay' rate for the inverse of

a banded matrix, and how to improve this estimate. The comparison of subspace iteration

with the Lanczos method is beyond the consideration of this paper.

This paper is organized as follows. In Section 2 two parallel tridiagonal solvers [27] are

extended to banded solvers. The second of these makes use of the decay of the inverse

of banded matrices. Theoretical and numerical results are presented for the comparison

of efficiencies. In Section 3, the parallel subspace iteration algorithm for the generalized

eigenvalue problem is described. A shift is introduced and analyzed, and computational

results are presented. Section 4 concludes by pointing out advantages and limitations of our

algorithm.

2 Parallel banded solvers

Tile Parallel Partition LU (PPT) algorithm and the Parallel Diagonal Dominant (PDD)

algorithm were proposed for solving tridiagonal linear systems on multicomputers in [27].

Itere we extend them to banded linear systems. Tile PPT algorithm is similar to an algorithm

introduced by Lawrie and Sarnehin [18]. The PDD algorithm is a variant of PPT which
usesthe fact that the entries in the inverseof a bandedmatrix decayawayfrom the main
diagonal.

Let us considera systemof order n

Ax =d (1)

where A is a nonsingular banded matrix with lower band width mt and upper band width ru_;

specifically, aij = 0 if i - j > rul or j - i > rn,. Let p denote the number of processors used,

and for convenience assume that n = pns and that the half band width ru := max(rut, ru_,) <

ns/2. Following [18] we partition A as a block p × p matrix with blocks of order ns:

A-1 CI

B_ A2

A= B3 A3 "..

• ., ... Cp_l

Ap

Let 3, = diag[Al,A2,...,Ap] and write A = A + AA. The main assumption of the PPT

and PDD algorithms is that both A and A are nonsingular. The as x ns submatrices Bi and

Ci have the form

[0 _0_] C_= [0 0]Bi= 0 ' Li 0

where Ri is rut x rul upper triangular and Li is ru= x ru_, lower triangular.

Let V and E be block p × (p - 1) matrices of the form

y

C2

"'. _-1

Bp

, E= G ""

• •- g

G

with n, x (rut + m,,) blocks

[oo] o] [o Oo]'Ci= 0 Li ' 0 0 ' F= Ira,

where lk denotes the identity matrix of order k. Set n_ := (m_ + m,,) (p - 1). Then V and

E are n x nr matrices and AA = VE T. Next, choose any n x (n- n,) matrix H so that

P = [EIH] is an n × n permutation matrix. Then ETE = I,_, HTH = I,__,_, ETH = 0,

and HTE = 01 and it follows that

[o]pTA-1Ap= HTftZ1v I,__,_

where Z = I,_ + ETft -IV. Consequently, if A and A are nonsingular, so is Z.

Now using the Sherman-Morrison-Woodbury formula [13], the solution of equation (1)

can be expressed as

x = A-_d = (/I+ VET)-ld

= A-'d- .4-'V(I,_r + ET_t-Iv)-IETA-ld.

Using this representation equation (1) can be solved in the following steps:

1. Solve/i(, Y) = (d, V)

2. Form Z = I,_r + ETy and h = ETic, then solve

Zy = h.

3. Calculate x = _ - Yy.

The matrix Z in Step 2 is called the reduced matrix, and has the form

[ml Z12

Z2, Ir_.
Z3,

Z __

lm 1

Z43

Z53

Z24

Z34
Ira.

Z2p-4,2p- 2

Ira, Z2p-3,2p-2

Z2p-2,2_-a Ira.

The matrix Z can be reformulated as a tridiagonal block matrix by the permutation of the

(2i - 1)-th and the 2i-th column blocks. Therefore the reduced system can be treated as a

banded system with the upper and lower band widths of rat + ra,, - 1. We reiterate that the

above matrix partitioning scheme is essentially the same as that proposed in [18].

We now outline the PPT algorithm.

Parallel Partition LU (PPT) Algorithm:

• Input: A, d

• Output: x

• In parallel, do on all processors Pi, i = 1,...,p:

1. Solve A,(3c,,Y_) = (d_,V_), where V = [V,,...,Vp] T, V = [y_,...,yp]T, with V,

and Vii us x n_ blocks, and d = [dl,...,dp] T, _: = [_1,...,5:p] T with di and &i

n_-vectors. Stop if Ai is algorithmically singular.

2. Following an all-to-all communication, form the reduced system Zy = h.

3. Solve the reduced system.

4. Calculate the i-th block of the solution x: xi = xi - Yiy.

The total number of data transferred is (m, + m_,)(m, + m_, + 1)(p - 1) (see [27]). Tile

number of flops is roughly (8rim 2 + 5nm)/p + 16(p- 1)m a with m = max(ml, m,,), the half

band width.

As indicated in [27], tile PPT algorithm performs well for narrow banded systems when

the number of processors is small (say p < 16). However, the efficiency of the algoritlml

decreases quickly as either the number of processors p or the half balld Width m increases,

since Steps 2 and 3 of tile algorittun are a bottleneck in both computation and data con>

munication. This is true for all known variants of tlie matrix tearing technique used here [9]

[10]. Under certain conditions this bottleneck can be removed. As was already mentioned

above, the entries of tile inverse of a nonsingular, banded matrix decay away from the main

diagonal (see [6]). When the decay in the inverse of A is sufficiently rapid, the reduced

matrix Z can be approximated by a block diagonal matrix Z with blocks of order mt+ m,,.

The PDD algorithm is tile PPT algorithm with Z replaced by Z. When the PDD algorithm

can be used, it is much more efficient than the PPT algorithm.

We now analyze the conditions under which the PDD algorithm is applicable. For sim-

plicity, we assume that the half band width m = mt= m_. We will use the notation

A (i, "i2,j_: j2) to denote the (i2- i_ + l) x (j2 -ja + 1) submatrix of A with upper left

corner at entry (i,,jl) and lower right corner at entry (i2,j2). Also, let [[t[denote the

OO- 11or111.

For i = 1,..., p - 2 the off-diagonal blocks Z2i+1,2_-1 and Z2i,2_+2 are obtained from

Z2i,_i+'a = Ai__l (1 : re, n, - m + 1 • n,) Li+l

and

and hence

and

Z2i+_,2i-1= Ai-¢_l(n_ - m + 1 : n_, 1 : m) t_i+,,

IIZ.a.._,+._ll_<IIA,-_I(1 • re, n, - m + I-'_,)IIItL_+,ll

tlZ'_;+,,',_-lll< IIA;-_I('_, - _'_+ 1 : ,_=,1 : "0t111/_+,11.

Using Proposition 2.3 of [6], it can be shown that there are constants C and q, C > 0 and

0 <q< 1, so that

max {IIA;-:, (1 • re, n, -m -I- 1:'_)11 IIA,-_,(_,- m + 1" n_ 1" _)tl} < c¢ _4''
l<_i<_p-2 _ _ --

where di_ = n_ - 2m + I is the shortest distance from the main diagonal to an entry of

Ai+ l(1 "m,n,-m+l',_,) or ,4;¢,(,z,-m+l "n,,1 "m). If A is positive definite, dis

can be replaced by 2dis. When n_/m >2> 1, these off-diagonal blocks cal, be neglected and

the reduced matrix Z can be replaced by the block diagonal approximation 2. Our test

for applicability of the PDD algorithm is as follows. Let u denote machine precision (unit

roundoff), and let c denote a small positive constant. We use PDD if

This means that PDD is used only if the perturbation in Z caused by zeroing the off-diagonal

blocks is comparable to the roundoff error introduced by solving the reduced system by a

numerically stable method. Equation (2) will be referred as test (2) in the following sections.

We now outline the PDD algorithm.

Parallel Diagonal Dominant (PDD) Algorithm:

• Input: rn-banded A, d

• Output: :red (an approximate solution of Ax = d)

• In parallel, do on all processors Pi, i = 1,...,p:

1. Solve Ai(_i, Y_) = (di, V_).

2. Send Yi(1 :m, 2m(i-2)+l:2m(i-2)+m) and 5:i(1 : m) to the processor

Pi-_ (i _ 1). Form the i-th block of matrix 2 (i _ p):

Im Z2i-l,2i
]

Z2i,.2_-1 lm a "

3. Solve

lm Z2i- 1,2iZ2i,2i-1 Im]
y (2m (i- 1)+ 1 : 2mi) = h (2m (i- 1)m + 1 : 2mi)

on Pi (i ¢ p), then send 9 (m (2i- 1) + 1 : 2mi) to the processor Pi+l.

4. Calculate the i-th block of xdd: (xdd)i = Yci -- Yi9.

Note that the system at Step 3 can be treated as a banded system with half band

width m if a permutation of column blocks is used. The total number of flops is roughly

(Snm 2 + 5nm)/p + 4m 3, and the number of data transferred is rn _ + 2m.

Our Hybrid Algorithm is simply: use PDD if applicable; otherwise use PPT.

The PPT and the PDD algorithms have been implemented on a 64-node NCUBE-1

computer for tridiagonal linear systems [27]. We present in Tables 1 and 2 the numerical

results of the two algorithms for banded matrices on a 16-node Intel iPSC/2 computer. The

testing banded matrices are of the form A = [aij], with

,1 if0<li-jl_<m
aij = 27n + S if i = j

0 otherwise

m

10

(s=69)

10

(s=-9)

2O

(s=12)

n p

640 1

2

4

8

3213) 1

2

4

3200 1

2

4

Table 1;
Execution Time (seconds)

PPT] SPT PDD SDD

2.624

2.224

1.907

13.186

1o2}
41643

4.811 2.598 4.768

6.429 1.887 6.144

7.434 0.922 6.700

Ratio

24.231 13.160 24.288

32.117 9.741 31.800

36.010 4.816 35.160

38.109 2.370 36.390

43.678 78.893 43.514 78.979

34.774 106.706 32.629 104.976

22.408 121.335 16.106 116.594

22:3! 9 7.771 118.908

SPT/PPT

1.83

2.89

3.90

1.84

3.18

6.21

8.21

1.81

3.07

5.41

SDD/PDD PPT/PDD

1.84

3.26

7.27

1.85

3.26
7.30

15.35

1.82

3.22

7.24

15.30

1.01

1.18

2.07

1.00

1.04
1.20

1.96

1.00

1.07

1.39

2.87

where s is chosen so that the off-diagonal blocks in the reduced matrix Z can be neglected.

In our numerical experiments, we have used Gauss elimination with partial pivoting to solve

the reduced system and a value c = 10 for tile test in equation (2). In our experiments, the

, accuracy of the PPTand the PDD algorithms is comparable to working precision.
Table 1 shows the execution time for different algorithms and the relative speedups. SPT

i

; and SDD are the sequential algorithms for PPT and PDD. They are executed on a single
processor. We use them to measure the relative speedup of the PPT and PDD algorithms.

In our tables, n is the order of the test matrix and p is the number of processors being used

for all the algorithms except SPT and SDD. For SPT and SDD, p is the number of blocks

in the partitioning scheme.

As already indicated, the solution of the reduced system Zy - h is a computation and

conmmnication bottleneck of the PPT algorithm. Table 2 contains, for each algorithm,

columns for the percentage of time spent on communication (comm. %) and for the time

_ spent on computation (comp. %) at Step 2 and 3. It is clear from both theoretical and

experimental results that the PDD algorithm is much more efficient when it is applicable.

3 A Parallel Algorithm for the Banded Generalized

Eigenvalue Problem

In this section, we consider generalized symmetric eigenproblems of the form

Ax = ABx, (3)

where A and B are symmetric, m-banded matrices and B is positive definite. We wish to

approximate the q, q << n, smallest eigenvalues A1 _< A2 _< ... _< Aq and corresponding

eigenvectors xl,...,xq. This type of problem frequently arises in vibration mode analysis

Table 2: Percenta e of

m n p

10 640 2

4

8

3200 2

4

8

16

20 3200 2
4

8

16

Execution Time in Solving
PPT

comm(%) comp(%)
0.6 2.6

1.2 17.2

3.2 54.0

0.1 O.5

0.3 3.8

1.1 17.8

2.8 50.0

0.1 0.8

0.3 6.9

1.0 29.1

13.5 77.5

Reduced System Zy = h
PDD

comm(%)
0.2

0.2

0.7

0.0

0.0

0.1

0.1

0.0

0.0

0.1

0.1

comp(%)
1.5

2.3

5.1

0.3

0.4

0.9

1.8

0.5

0.7

1.5

3.0

[2] [3], [15], where A and B are, respectively, the stiffness matrix and mass matrix. The

eigenvalues Ai are the squares of the the free vibration frequencies and the eigenvectors xi

are the corresponding mode shape vectors.

Many sequential algorithms for solving the symmetric eigenvalue problem have been

developed including those in [1]. In recent years parallel algorithms for advanced computers

have appeared such as those found in [11] [15] [17] [19] [20] [22] [24]. Most of these algorithms

require reduction to tridiagonal form for an equivalent standard problem, or computation of

all eigenpairs. The algorithm proposed in this paper is a parallel subspace iteration algorithm

for finding the q smallest eigenvalues and corresponding eigenvectors that takes advantage of

the assumption that m and B are banded. Subspace iteration [2] [4] [23] [25] [26] is a reliable

and cost effective method for solving the eigenvalue problem considered here to moderate

accuracy. It has been used extensively in a number of general purpose finite element analysis

programs [2].

Using a shift s, a symmetric matrix pencil (A, B), with B positive definite, can be

transformed to a positive definite matrix pencil (A - sB, B). This shift leaves eigenspaces

unchanged. For the moment let us assume that the pencil (A, B) is positive definite.

The basic subspace iteration algorithm then consists of the following steps:

• Establish a starting subspace of dimension _ spanned by the columns of S (°) where

(_ > q and q is the number of eigenpairs to be calculated.

• For k = 0, 1,..., until the first q eigenvalues satisfy a stopping criterion.

1. apply the Rayleigh-Ritz (RR) procedure to extract the "best" eigenvalue and

eigenvector approximations from S (k).

2. improve 3 '(k) by an inverse iteration

AS(k+ ') = BS(k).

The starting subspace can be generated as discussed in [2] or can be generated randomly.

The user can input the value of q; the default value is _ = min{2q, q + 8} based on the

7

numerical experiments found in [2]. The details of the RR procedure are described in the

RR algorithm :

RR Algorithm:

• Input: S

• Output: eigenpair approximations for Ax =)_Bz from S

1. Orthonormalize the columns of S with respect to B to obtain Q written over S,

i.e. QT BQ = I.

2. Form the Rayleigh Quotient: Ha = QrAQ.

3. Find eigenpairs of HA: (Oj, Cj), j = 1,... ,={.

4. Form the "best" e.igenpair approximations from ,5': (0j, zj), with xj = QCj, j =

1,... ,_.

Let

0(P+ _) _ 0_k)

r5k) = ;ik) - 0}k_l) , j = 1,...,q.
(4)

Since limk--.o_ rJ k) = ()b/)_4+1) 2, the efficiency of the subspace iteration method depends

on .kq/)_+l, the ratio of the largest desired eigenvalue)_q and the eigenvalue)_7+1 for the

pencil (A, B). If this ratio is small, as in inverse iteration with a good shift, only a few

iterations will be needed. In this case, the fact that the method is simple, does not require

reduction to tridiagonal form, and economizes on data movement from memory, make it an

ideal algorithm, especially for high-performance computers. We note that the most operation

intensive parts of the algorithm are the first two steps Of the RR procedure and the solution

of the linear systems• The computation cost for the eigenpairs of HA can be ignored since

q << n. The RR procedure can be implemented efficiently on a variety of architectures using

computationalty primitive BLAS [1] [7]. The linear systems involved are banded and positive

definite.

For our parallel subspace iteration algorithm, we divide the banded pencil (A, B) into p

blocks, with n, rows per block,

(A, B) =

AI,

Aa,

Ap,

81

B2

Bp

and assign one block to each processor. Our algorithm is outlined as follows.

(5)

Parallel Subspaee Iteration Algorithm:

• Input: (A, B), tol

• Output: ()q,xi), i = 1,...,q, first q eigenpairs of (A,B)

• In parallel, do on all processors Pj, j = 1,... ,p:

1. Calculate concurrently a shift s, then shift (A, B) to (As, B) with As = A - sB.

2. Generate S5 °), the j-th block of a starting matrix S '(°), where S}°) is an ns x 4
matrix.

3. For k=O, 1,...,

- Apply the RR procedure concurrently.

- Solve AsS (k+l) = BS (k) by the PPT or PDD algorithm until the computed

eigenvalues of (As, B) satisfy

10!_ 0!k-')l
< tol, i = 1,...,q.

10}k)+ el

4. Set Ai := 0_k) + s, xi := xl k), i = 1,...,q.

The selection of the shift s at Step 1 is critical to the reliability and efficiency of the

algorithm. There are, however, several competing requirements placed on the shift s. First,

for tile convergence and stability of the algorithm, the shift s should satisfy

max I)_j- s I < max l,k_- s I
l<j<q j'>_ '

and .s should ,lot be an eigenvalue or too close to an eigenvalue of (A, B) [2]. Second, in

order to reduce the number of iterations, s should be close to)_j, j = 1,...,q, since the

rate of convergence of 0_k) is ()_j - s)2/(A_+l - s) 2. Finally, to obtain the greatest efficiency

tlle shift s should be chosen, whenever possible, so that tile PDD algorithm can be used to

solve the systems AsS (_+1) = BS(i), because the PDD algorithm, among all parallel banded

solvers, is one of tile most efficient parallel algorithms. If it is not possible to find a shift

.s so that As satisfies test (2), then the PPT algorithm nmst be used to solve this system.

Based on these requirements, we use the following process to select a shift s.

Shift Selection Strategy:

1. Approximate the smallest eigenvalue)q of (A, B), then shift (A, B) to (A,,, B), where

A,, =A-elBwith

sl =AI-_ foraY>0

and 3 is made small compared to Al. Since the smallest eigenvalue of (As,, B) is 3, the

pencil (As,, B) continues to be positive definite, but has a small extreme eigenvalue.

This guarantees the convergence and stability of the iterations, and also minimizes the

number of iterations. Find a positive lower bound for the smallest eigenvalue of A.

2. Compute the off-diagonal blocks of the reduced matrix for A, 1 and the timing ratio for

the PPT and PDD algorithms

execution time of PPT

rti,,_ = execution time of PDD"
(6)

The ratio rti,_ is a function of the matrix parameters n, m, p, and rco,-,v/rco,,_,_, where p

is the number of processors used, and rcomp and rcom,,_ are the speeds for floating point

computation and data communication, rtime can be estimated from the complexities of

the PPT and PDD algorithms given in Section 2 or measured by numerical experiments.

3. If test (2) is satisfied by A_, or rtime _ 1, then set s := sl, and stop.

° If A passes test (2), apply the Shift Refinement algorithm (below) to (As,, B), and

e = sl, and set s2 = t, s = sa - s2, and stop. Here t denotes the output of the Shift

Refinement algorithm.

5. Apply test (2) to B. If B does not pass test (2), then set s2 := 0, s := sl, and stop.

. Attempt to compute a positive ¢" so that A + ¢'B satisfies test (2). If such an _ is

found, apply the Shift Refinement algorithm to (A, B) and e = _. Set s2 := sl + t and

s := sl - s2; otherwise set s2 = 0 and s := sl.

In the following, we give the details of Steps 1 and 6.

Computation of s_:
The inverse iteration:

Ax(k) = r(k-_) Bx (k-_)

)_Ik) x (k)r Ax(k)
- X(k)TBX(k) k = 1,2,...,

where r (k) is a normalization constant, is used to obtain an approximation of)_1. The

iteration { (._I k), x (k)) } converges to the first eigenpair of (A, B) since the matrix pencil (A, B)

is positive definite. Few iterations are needed at this step because only a crude approximation

of)q is necessary. In our experiments, the linear systems Ax (k) = r(k-1)Bx (k-l) are solved by

the Hybrid algorithm introduced in Section 2. We note that matrix factorization is needed

only at the first iteration. The iterations are terminated when

IAlk) - Alk-')l < 10 -2 (7)

A_k)

and sl is chosen as sl = 0.95_I k), which implies that 6 _ 0.04)_. Similarly, we find a positive

lower bound for the smallest eigenvalue of A for use in Step 6. The quantity 6(A) required

in Step 4 of the Shift Selection Strategy is a by-product of the inverse iteration in Step 1.

Computation of s2:

This shift is introduced only when A_I has failed to pass test (2) and rtim_ >> 1. This is the

situation when the PDD algorithm can not be applied to the systems A_ S (k+0 = BS (k) and

the PPT is much more expensive than the PDD algorithm (most parallel banded solvers [9]

10

[10] [14] [18] haveroughly similar computation and communicationcomplexitiesasthoseof
PPT). As indicated by the theoretical and experimental resultsof Section2, rtim_ increases

significantly when the number of processors or the band width increases. If shift s2 can

be found, it can be used to remove the bottleneck of the PPT algorithm. However, while

this shift reduces execution time for each single iteration, it increases the total number of

iterations at the same time. Whether this shift can and should be performed depends on

the eigenproblem (3) and the machine architecture. We now describe Step 6.

For a positive definite m-banded matrix M it is shown in [6] that

M-'(i'J), <- 21[M-I[12"_Ii-Jl"7 = "/(M) :=] _+1 Amin(M)

where A,,_(M) and A,,n(M) denote the largest and smallest eigenvalues of M. If M_ is a

diagonal block of M, then it follows that _'(M_) _< 7(m). Applying test (2) to M, we find
that

5(M) <_ C('7(M)) d_s

where C is a constant which depends on M. We will use the heuristic

6(A + CB) _ C(_/(A + CB)) _'s

and assume that the constant C does not depend on _'. We determine it by setting C =

5(A)/(7(A)) d'_.

We use inverse iteration to find 0 < Co _< A,,,_(B) and 0 < do _< A,,,_(A), and we use

Gershgorin's Theorem to find c_ = max_j_ Ib_jl > Am_(B) and da = max_j_a la,jl >_
Am_(A). The lower bound do was found in Step 1. In many cases B has special structure

(such as diagonal or diagonally dominant) so that Co can be found analytically. We approxi-

mate _'(A), 7(B), and _/(A+_B) using ra = dl/do, rB = O/Co, and r< = (da +@l)/(do+@o).

These _/'s and r's are upper bounds for the exact values. If

C(_/(B)) di_ = 5(A)f T(B)] di_ > cu,
\'7 (A) ,] -

then the heuristic has failed and we set s2 := 0 and s := sa. Otherwise, the heuristic can be

solved for _"by setting 5(A + _B) = cu and solving for (_:

c__ fl + a,__ (c)-,/(:d_)¢= d,/_- rdo/Co,"= =,

7'B
(8)

Finally, if A + _'B does not satisfy test (2), the heuristic fails and we set s2 := 0 and s := s_.

Let A and B be partitioned as in equation (5). The following Shift Refinement Algorithm

uses local bisection iteration to approximate the optimal shift s2.

Shift Refinement Algorithm:

• Input: Kmax, and (A, B), _ > 0 so that A + eB satisfies test (2)

• Output: 0 < t _< c so that A + tB satisfies test (2)

11

Table 3: Execution Time of the Parallel SubspaceIterations on iPSC/2.
71

1200

(m = 5)

3600

(., = 5)

t' 1_ (seconds) K ' I (seconds)
fT_C)f-- T'/Vv l[n Te

! 5 1200 297.537
, | 92.849 5 1.93 II ', ', 158.383

| 48.798 5 3.67 II (rn = 10) _ I 83.953

|26.467 5 6.76 tl [I 44.328

.__) _1:3;_ 4......... _54_.11.56__1/3600 161 763.19324"907

:, 12251086 4 1.97 I1 ' ' 396.942

z 1116.258 4 3.82 II (m = 10) , , 213.064
8 | 60.248 4 7.37 II ; ; 108.022

16 I 31.807 4 13:96 !! 16 I 56.136

(c_ = 1.0)

K T1/TpI
6
6 1.88 I

6 3.54

6 6.71

6 11.95 I
I

5

5 1.92 I
5 3.581

5 7.071

5 13.601

Table 4: Execution Time of the Parallel Subspace Iterations on iPSC/860. (a = 0.1)

[m n p [p 1 r (seconds)
PDD I PPT

l-i 0- 32-00 _ i 2 '
4 I 4 55.472 161.219

8 I 8 27.725132.583

16 1 16 14.342 121.978

32 t 32 7_906 I *

Tp (seconds) m I n
PDD PPT

69.745 69--745 _-00

20.856 23.090

10.775 14.110

5.910 10.744
4.150 11.988]

I

64 110.432"* * [64 4_679 I *
• Exceed memory capacity; *+ Shift s2 is used.

* In parallel, do oil all processors Pi, i = 1,... ,p:

1. If the corresponding off-diagonal blocks of Z for Ai passed tile test (2),

set ti := O;

else

initialize t! °) := e, t! 1) := e/2; for k = 1,..., Kmax,
(k)

compute corresponding off-diagonal blocks of Z for Ai + ti Bi.

(k+l) := t!k) _ _/2k+_.If the test (2) is satisfied, t i

(k+l) t_k) _/2k+_.otherwise set t i := +
. (Kmax+l)Set := • > , k= 0,...,1,'re,l}

endif

2. Followinga global communication, get l := max{ti, i = 1,... ,p}.

In Tables 3-6, we present the numerical results of the Parallel Subsl)ace Iteration algo-

rithm on iPSC/2 and iPSC/860 multiprocessors. The program was written in Intel Fortran

using its communication library. Some Linpack [8] and BLAS [7] Fortran source codes were

12

Table 5: Execution Time of the Parallel Subspace Iterations (n/p = 85, a = 0.1)
p PDD with s2 PPT without s2

4
8
16
32

Tp (iPSC/2) Tv (iPSC/860)
96.610 7.391
97.173 7.584
97.757 7.729

7.954

K Tp (iPSC/2)
24 86.101
24 112.811
24 166.732
24

Tv (iPSC/860) K
6.879 19
8.899 19
12.541 19
20.489 20

used oil the nodes. Tile testing matrices, except in Table 6, are A = [aij], B = I,_, with

1 if0< li-jl <_m
aii = 2m + od ifi=j

0 otherwise

where ce roughly equals tile separation of eigenvalues. T v is tile execution time in seconds

using p processors which includes the time spent on the shift selection, and K is the number

of iterations. The number of required eigenpairs is q = 10. The error tolerance tol, except in

Table 5, is chosen such that the eigenvalues are approximated to about six-digit accuracy. In

Tables 3 and 4, excepting the case marked by **, all testing matrices A,, passed the test (2).

Thus, the PDD algorithm is applied directly without any extra iterations. For comparison,

in Table 4, the results of using the PPT algorithm are presented. The efficiencies are much

higher when the PDD algorithm is applied, especially for large problem sizes. Table 4 shows

that if the number of processors is small, the size of a problem may exceed the memory

capacity of the multiprocessors. More processors must be employed. However as the number

of processors increases, the order of the resulting reduced system may become too large for a

single processor. In this situation the PDD algorithm is the only choice for solving the linear

systems involved even though it may cause more iterations. For the experiments presented

in Tables 3 and 4, the order n of A and B was held constant. In Table 5 experiments are

presented in which the order of the local submatrices is held constant at } = 85 and the order
n of A and B is scaled with the number of processors. Here, the error tolerance was also

increased to nine-digit accuracy. The half band width is m = I0. These results demonstrate

the parallel efficiency of the shifting strategy,, especially on a large number of processors.

For these problems, as the number of processors increases, the efficiency remains unchanged

when .% is used. Without it, the performance of the algorithm deteriorates quickly. The

parallel scalability afforded by the shifting strategy more than offsets the initial overhead in

computing s2 and the additional number of iterations. This seems to suggest that as long as

the shift s2 is relatively small and introduces a moderate number of iterations, using it with

the PDD algorithm should be more eft%lent than the PPT algorithm, especially for large

problems on a large number of processors. When the shift s2 is too large, it can cause a

significant increase in the numl)er of iterations. Whether the shift .% should be performed is

problena and machine dependent, and an a prior criterion is not available. Fortunately, once

the shift s_ is performed, the efficiency of the shift can be assessed after a few iterations.

Assessing the efficiency of the shift s2:

Assuming the iteration vector z_ k) has reached its asymptotic rate of convergence, that

13

Table 6: Execution Time of
1

n] p Tp (seconds)
/

640 1 156.258
2 78.719

4 40.831
8 25.815
16 16.828

3600 l 796.953
2 422.973
4 163.940

8 75.556
16 43.429

the Parallel Subspace Iterations (PPT)

T,/Tp K maxi<,<q 1:q,¢)I
12 2.3 x 10-6

1.99 11 2.0 x 10-6
3.83 10 5.1 x 10-s
6.05 10 2.7 x 10-7
9.29 8 1.4 x 10 -6

11 3.4 x 10-6
1.88 11 1.5 x 10-5
4.86 8 1.2 x 10 -3
10.55 7 2.3 x 10-3
18.35 7 1.6 x 10-6

is (see equation (4)), the convergence rates of the two approaches (PDD

with shift s2 or PeT without shift a2) can be estimated by ?'dd = ?'_k) and ?'pt = ((A_ k) -

s2)/(A_k)/_-- s2)) 2 respectively. Let tol = 10-dl The numbers of iterations for these two

approaches are roughly ndd = --d/log?'ad and npt = -d/log%t. The timing ratio of the two

approaches is Time(PPT) × nvt log rdd
---- -_- ?'time X

Rtirae Time(PDD) x had tog ?'pt

If Rtim_ << l, the shift s2 should be abandoned and As_ used on X (k). In this case, the use

of shift s2 may cause a large increase in the number of iterations.

Finally we present interesting numerical results for an eigenvalue problem of a simply

supported beam from structural mechanics. The stiffness matrix A is positive definite with

half band width 3, while the mass matrix B is a diagonal matrix with a wide range of diagonal

entries. The problem comes from the discretization of a differential system by central finite

differences. Consequently, the largest eigenvalue of (A, B) is O(n2). Since

< <

(_ d, >= A_(A,B)..k_in(B) _ O(n 2) as n _ oo

(see equation (8)), the shift s2 would be very large if it is needed. In this example, matrix

A fails test (2) and the shift s2 is too large, therefore the linear solver PPT is used. Table

6 shows the performance of the algorithm. It is interesting to note that when the number

of processors increases, the number of iterations K decreases. Although when using the

PPT with a large number of processors, the Parallel subspace iterations algorithm generally

has low efficiency, here "super linear" speedups are observed. In this example, smaller

subsystems are much better conditioned than larger ones. This may explain the decrease in

K with increasing p. The answer awaits further investigation.

14

4 Remarks and Conclusions

The parallel algorithm proposed here needs little more storage than its sequential version.

Most other parallel eigensolvers require that each processor have direct access to the entire

matrix pencil (A,B), while in our algorithm, the matrix pencil (A,B) and the iterative

vectors ,5'(k) are divided evenly into blocks, which are allocated to corresponding processors.

Each processor operates only on its own blocks of (A, B) and ,__(k) most of the time. All

processors solve identical subproblems and communicate the same amount of data at each

step of the computation. The load is perfectly balanced. The shift s2 reduces data references

between processors and greatly increases the parallel efficiencies in some situations. When

the number of processors is large, secondary memory is usually not necessary even for large

problems. Data transfer between different levels of memory can be reduced by employing

block matrix computations, such as BLAS [1] [7]. When the number of processors or the

band width is large, the size of the reduced system Zy = h can become prohibitive for

the PPT algorithm and most other banded solvers. In this situation, shift s2, with its

possibly high number of iterations, seems to be the only alternative. The efficiency of

the shift s2 is machine dependent. Our numerical results suggested that, on iPSC/2 or

iPSC/860 hypercube multiprocessors, this shift can lead to higher efficiencies when the ratio

of largest to smallest eigenvalues of the pencil is O(n), but it is detrimental when this

ratio is O(n 2) or greater, which is typically the case with problems derived from differential

equations. However, in this case, the numerical experiments of Table 6 indicate that the

PPT version of our algorithm exhibits "superlinear" convergence. This may occur because

smaller submatrices are much better conditioned than larger ones.

Many acceleration schemes have been applied to the basic sequential subspace iteration

method [3] [26], making it efficient for a wide variety of applications. Most of these acceler-

ating schemes can be easily incorporated into our parallel algorithm.

References

[1] E. ANDERSON ET AL., Lapack Users' Guide, Society for Industrial and Applied Math-
ematics, 1992.

[2] K. J. BATHE, Finite Element Procedures in Engineering Analysis, Prentice-Hall, En-

glewood Cliffs, N J, 1982.

[3] K. J. BATHE AND S. RAMASWAMY, An accelerated subspace iteration method, J. Com-

puter Methods in Applied Mechanics and Engineering, 23 (1980), pp. 313-331.

[4] M. CLINT AND A. JENNINGS, The evaluation of eigenvalues and eigenvectors of a real

symmetric matrix by simultaneous iteration, Comput. J., 13 (1970), pp. 76-80.

[5] C. R. CRAWFORD, Reduction of a band-symmetric generalized eigcnvalue problem,

Comm. ACM, 16 (1973), pp. 41-44.

[6] S. DEMKO, W. F. MOSS, AND P. W. SMITH, Decay rates for inverses of band matrices,

Mathematics of Computation, 43 (1984), pp. 491-499.

I5

[7] J. DEMMEL, J. DONGARRA, J. DUCROZ, A. GREENBAUM, S. HAMMARLING, AND

D. SORENSEN, Prospectus for the development of a linear algebra library for high-

performance computers, Tech. Rep. TM-97, Mathematics and Computer Science Div.,

Argonne National Laboratory, Argonne, IL, (1987).

[8] J. J. DONGARRA ET AL., Linpack Users' Guide, Society for Industrial and Applied

Mathematics, 1979.

[9] J. J. DONGARRA AND L. JOtlNSSON, Solving banded systems on a parallel processor,

Parallel Comput., 5 (1987), pp. 219-246.

[10] J. J. DONGARRA AND A. SAMEH, On some parallel banded system solvers, Parallel

Comput., 1 (1984), pp. 223-235.

[11] J. J. DONGARRA AND D. C. SORENSEN, A fully parallel algorithm for the symmetric

eigenvalue problem, SIAM J. Sci. Stat. Comput., 8 (1987), pp. 139-154.

[12] G. H. GOLUB AND D. P. O'LEAH¥, Some history of the conjugate gradient and Lanczos

algorithms: 1948-1976, Siam Review, 11 (1989), pp. 50 100.

[13] G. H. GOLUB AND C. F. VAN LOAN, Matrix Computations, The Johns Hopkins

University Press, Baltimore, 1983.

[14] C. T. Ho AND S. L. JOHNSON, Optimizing tridiagonal solvers for alternating dircc-

tion methods on boolean cube multiprocessors, SIAM J. Sci. Star. Comput., 11 (1990),

pp. 563-592.

[15] M. T. JONES AND M. L. PATRICK, The use of Lanczos's method to solve the large

generalized symmetric definite eigenvalue problem, Report no. 89-69, Institute for Com-

puter Applications in Science and Engineering (ICASE), NASA Langley Research Cen-

ter, Hampton, VA, (1989).

[16] M. T. JONES AND P. E. PLASSMANN, Scalable iterative solution of sparse IiTzear sys-

terns, Technical Report MCS-P277-1191, Mathematics and Computer Science Division,

Argonne National Laboratory, (1991).

[17] L. KAUFMAN, An algorithm for the banded symmetric generalized matrix eigenvaIue

problem, SIAM J. Matrix Anal. Appl., 14 (1993).

[18] D. H. LAWRIE AND A. H. SAMEH, The computation and communication complexity

of a parallel banded system solver, ACM Transactions of Mathematical Software, 10

(1984), pp. 185-195.

[19] T. Y. LI, H. ZHANG, AND X. H. SUN, Parallel homotopy algorithm for symmetric

tridiagonal eigcnvatue problems, SIAM J. Sci. Star. Comput., 12 (1991).

[20] S. S. Lo, B. PHILIPPE, AND A. SAMEH, A muItiprocessor algorithm for the symmetric

tridiagonal eigenvalue problem, SIAM J. Sci. Star. Comput., 8 (1987), pp. I55 165.

16

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

B. NOUR-OMID, B. N. PARLETT, AND R. L. TAYLOR, Lanczos versus subspace iter-

ation for solution of eigenvalue problems, International Journal for Numerical Methods

in Engineering, 19 (1983), pp. 859-871.

R. D. PANTAZIS AND D. B. SZYLD, A multiprocessor method for the solution of the

generalized eigenvatue problem on an interval, Proceedings of the Fourth SIAM Confer-

ence on Parallel Processing for Scientific Computing, (1990), pp. 36-41.

B. N. PARLETT, The Symmetric Eigenvalue Problem, Prentice-Hall, Englewood Cliffs,

N J, 1980.

C. J. RIBBENS AND C. BEATTIE, Parallel solution of a generalized symmetric eigen-

value problem, Proceedings of the Fifth SIAM Conference on Parallel Processing for

Scientific Computing, (1991), pp. 16-21.

H. RUTISHAUSER, Simultaneous iteration method for symmetric matrices, Numer.

Math., 16 (1970), pp. 205-223.

G. W. STEWART, Accelerating the orthogonal iteration for the eigenvalues of a hermi-

tian matrix, Numer. Math., 13 (1969), pp. 362-376.

X. SUN, H. ZHANG, AND L. M. NI, Efficient tridiagonal solvers on multicomputers,

IEEE Trans. on Compu., 41 (1992), pp. 286-296.

S. WANG AND S. ZHAO, An algorithm for Ax = ABx with symmetric and positive

definite a and b, SIAM J. Matrix Anal. Appl., (1993).

J. H. WILKINSON, The Algebraic Eigcnvalue Problem, Clarendon Press, Oxford, Eng-
land, 1965.

17

Form Approved
REPORT DOCUMENTATION PAGE Oia no.o_o.olaa

1

Pubtic rel:>orUng burden for this collection of information _$est_mate<$ to average 1 hour Der resoomse, including the time for reviewing instructions searching extst ng data source'..

gathering and maintaining the data neecied, arid cOmDleting and revlew,ng the coltec_to_ of _nformat_on Send comments regarding this burden est'imate or any other aspect Of th_s
collection of information. ,ncluding suggestions for reduong this burden, to Washington Headquarters Services. Dtrectorate for Information Operation_ and Reports. 1215 Jefferson

Davis Highway, Suite 1204, Arlington, VA 22202-4302. and _o the Office of Management and Budget, Paperwork Reduction Project (0704-01B8). Washington. DC 20503

1. AGENCY USE ONLY (Leave blank) 2. REPORTDATE

September 1993

4. TFFLEAND SUBTITLE

USING PARALLEL BANDED LINEAR SYSTEM SOLVERS IN

GENERALIZED EIGENVALUE PROBLEMS

6. AUTHOR(S)

Hong Zhang
William F. Moss

7. PE_ORMING"ORGANIZATION NAME(S) AND ADDRESS(ES)

Institute for Computer Applications in Science

and Engineering

Mail Stop 132C, NASA Langley Research Center

Hampton, VA 23681-0001

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

National Aeronautics and Space Administration

Langley Research Center

_ampton, VA 23681-0001

3. REPORTTYPE AND DATES COVERED

Contractor Report
5. FUNDING NUMBERS

C NASI-19480

WU 505-90-52-01

8. PERFORMING ORGANIZATION
REPORT NUMBER

ICASE Report No. 93-71

1'(].SPONSORING/ MONITORING
AGENCY REPORT NUMBER

NASA CR-191540

ICASE Report No. 93-71

11. SUPPLEMENTARYNOTES

Langley Technical Monitor:

Final Report

Michael F. Card Submitted to Journal of

Parallel Computing

12a.'I)ISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Unclassified - Unlimited

Subject Category 61

13. ABSTRACT(Maximum2_words)
Subspace iteration is a reliable and cost effective method for solving positive

definite banded symmetric generalized elgenproblems, especially in the case of large

scale problems. This paper discusses an algorithm that makes use of two parallel

banded solvers in subspace iteration. A shift is introduced to decompose the banded

linear systems into relatively independent subsystems and to accelerate the itera-

tions, With this shift, an eigenproblem is mapped efficiently into the memories of

a multiprocessor and a high speed-up is obtained for parallel implementations. An

optimal shift is a shift that balances total computation and communication costs.

Under certain conditions, we show how to estimate an optimal shift analytically

using the decay rate for the inverse of a banded matrix, and how to improve this es-

timate. Computational results on iPSC/2 and IPSC/860 multlprocessors are presented.

14. SU_E_ TERMS

generalized eigenvalue; banded matrix; parallel algorithm

17. SECURITYCLASSIFICATION
OF REPORT

Unclassified

NSN 7540-01-280-5500

t8. SECURITYCLASSIFICATION
OF THIS PAGE

Unclassified

U.S. GOVERNMENT P?INTING OFFICE: 1993 - 528-064/86079

15. NUMBER OF PAGES

19

16. PRICECODE

A03

19. SECURITYCLASSIFICATION 20. LIMITATION OF ABSTRACT
OF ABSTRACT

Standard Form 298 (Rev 2-89)
Prescribed by ANSt <_td Z39-18
29S-I02

